Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 30(2): 185-198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623165

RESUMO

The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant's genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01423-y.

2.
Phytochem Anal ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419380

RESUMO

INTRODUCTION: Auxin estimation in plant tissues is a crucial component of auxin signaling studies. Despite the availability of various high-throughput auxin quantification methods like LC-MS, GC-MS, HPLC, biosensors, and DR5-gus/gfp-based assays, auxin quantification remains troublesome because these techniques are very expensive and technology intensive and they mostly involve elaborate sample preparation or require the development of transgenic plants. OBJECTIVES: To find a solution to these problems, we made use of an old auxin detection system to quantify microbe derived auxins and modified it to effectively measure auxin levels in rice plants. MATERIALS AND METHODS: Auxins from different tissues of rice plants, including root samples of seedlings exposed to IAA/TIBA or subjected to different abiotic stresses, were extracted in ethanol. The total auxin level was measured by the presently described colorimetric assay and counterchecked by other auxin estimation methods like LC-MS or gus staining of DR5-gus overexpressing lines. RESULTS: The presented colorimetric method could measure (1) the auxin levels in different tissues of rice plants, thus identifying the regions of higher auxin abundance, (2) the differential accumulation of auxins in rice roots when auxin or its transport inhibitor was supplied exogenously, and (3) the levels of auxin in roots of rice seedlings subjected to various abiotic stresses. The thus obtained auxin levels correlated well with the auxin levels determined by other methods like LC-MS or gus staining and the expression pattern of auxin biosynthesis pathway genes. CONCLUSIONS: The auxin estimation method described here is simple, rapid, cost-effective, and sensitive and allows for the efficient detection of relative auxin abundances in plant tissues.

3.
Protoplasma ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217739

RESUMO

The latest CRISPR-Cas9-mediated genome editing technology is expected to bring about revolution in rice yield and quality improvement, and thus validation of rice transformation protocols using CRISPR-Cas9-gRNA constructs is the need of the hour. Moreover, regeneration of more number of transgenic rice plants is prerequisite for developing genome-edited rice lines, as recalcitrant rice varieties were shown to have lower editing efficiencies which necessities screening of large number of transgenic plants to find the suitable edits. In the present study, we have simplified the Agrobacterium-mediated rice transformation protocol for both Indica and Japonica rice cultivars using CRISPR/Cas9 empty vector construct, and the protocols have been suitably optimized for getting large numbers of the regenerated plantlets within the shortest possible time. The Japonica transgenic lines were obtained within 65 days and for the Indica cultivars, it took about 76-78 days. We also obtained about 90% regeneration efficiency for both Japonica and Indica cultivars. The transformation efficiency was about 97% in the case of Japonica and 69-83% in the case of Indica rice cultivars. Furthermore, we screened the OsWRKY24 gene editing efficiency by transforming rice cultivars with CRISPR/Cas9 construct harbouring sgRNA against OsWRKY24 gene and found about 90% editing efficiency in Japonica rice cultivars, while 30% of the transformed Indica cultivars were found to be edited. This implicated the presence of a robust repair mechanism in the Indica rice cultivars.

4.
Physiol Mol Biol Plants ; 29(9): 1247-1259, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38024949

RESUMO

Photosynthesis is the basis of almost all life on earth and is the main component of crop yield that contributes to the carbohydrate partitioning to the grains. Maintaining the photosynthetic efficiency of plants in challenging environmental conditions by regulating the associated factors is a potential research arena which will help in the improvement of crop yield. Phosphorylation is known to play a pivotal role in the regulation of photosynthesis. Mitogen Activated Protein Kinases (MAPKs) cascade although known to regulate a diverse range of processes does not have any exact reported function in the regulation of photosynthesis. To elucidate the regulatory role of MAPKs in photosynthesis we investigated the changes in net photosynthesis rate and related parameters in DEX inducible over-expressing (OE) lines of two members of MAPK gene family namely, OsMPK3 and OsMPK6 in rice. Interestingly, significant changes were found in net photosynthesis rate and related physiological parameters in OsMPK3 and OsMPK6-OE lines compared to its wild-type relatives. OsMPK3 and OsMPK6 have regulatory effects on nuclear-encoded photosynthetic genes. Untargeted metabolite profiling reveals a higher accumulation of sugars and their derivatives in MPK6 overexpressing plants and a lower accumulation of sugars and organic acids in MPK3 overexpressing plants. The accumulation of amino acids was found in abundance in both MPK3 and MPK6 overexpressing plants. Understanding the effects of MPK3 and MPK6 on the CO2 assimilation of rice plants under normal growth conditions, will help in devising strategies that can be extended for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01383-9.

5.
Plant Cell Environ ; 46(8): 2277-2295, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157977

RESUMO

The mitogen-activated protein kinase (MAPK) pathway is an important signalling event associated with every aspect of plant growth, development, yield, abiotic and biotic stress adaptation. Being a central metabolic pathway, it is a vital target for manipulation for crop improvement. In this review, we have summarised recent advancements in understanding involvement of MAPK signalling in modulating abiotic and biotic stress tolerance, architecture and yield of plants. MAPK signalling cross talks with reactive oxygen species (ROS) and abscisic acid (ABA) signalling events in bringing about abiotic stress adaptation in plants. The intricate involvement of MAPK pathway with plant's pathogen defence ability has also been identified. Further, recent research findings point towards participation of MAPK signalling in shaping plant architecture and yield. These make MAPK pathway an important target for crop improvement and we discuss here various strategies to tweak MAPK signalling components for designing future crops with improved physiology and phenotypes.


Assuntos
Ácido Abscísico , Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Abscísico/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Produtos Agrícolas/metabolismo
6.
Front Plant Sci ; 13: 1059559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531415

RESUMO

The auxin efflux transporter proteins called PINs ferry auxin from its source to sinks in particular directions depending on their polar localizations in the plasma membrane, thus facilitating the development of the entire plant architecture. The rice genome has 12 PIN genes distributed over eight chromosomes. To study their roles in plant development, abiotic stress responsiveness, and shaping an auxin-dependent root architecture, a genome-wide analysis was carried out. Based on phylogeny, cellular localization, and hydrophilic loop domain size, the PINs were categorized into canonical and noncanonical PINs. PINs were found expressed in all of the organs of plants that emphasized their indispensable role throughout the plant's life cycle. We discovered that PIN5C and PIN9 were upregulated during salt and drought stress. We also found that regardless of its cellular level, auxin functioned as a molecular switch to turn on auxin biosynthesis genes. On the contrary, although PIN expression was upregulated upon initial treatment with auxin, prolonged auxin treatment not only led to their downregulation but also led to the development of auxin-dependent altered root formation in rice. Our study paves the way for developing stress-tolerant rice and plants with a desirable root architecture by genetic engineering.

7.
Sci Rep ; 6: 39266, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000793

RESUMO

The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice.


Assuntos
Oryza/metabolismo , Transcriptoma , Regulação para Baixo , Flores/genética , Flores/metabolismo , Nitrogênio/deficiência , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Fosfatos/deficiência , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA